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ON FREE VIBRATIONS OF ECCENIRICALLY STIFFENED
CYLINDRICAL SHELLS AND FLAT PLATES

By Martin M. Mikulas, Jr., and John A. McElman
Langley Research Center

SUMMARY

Dynamic equilibrium equations and boundary conditions are derived from
energy principles for eccentrically stiffened cylinders and flat plates.
Tnplane inertias are neglected and frequency expressions are obtained for
simple-support boundary conditions for both the cylinder and the plate. Results
in the form of plots of frequencies as a function of mode shape illustrate the
effects of eccentricities. It is found that these eccentricities can have a
significant effect on natural frequencies and should be investigated in any
dynamic analysis of stiffened structural members.

INTRODUCTION

The effects of stiffener eccentricities on the buckling characteristics
of stiffened circular cylindrical shells are being given a great deal of con-
sideration in the design of aerospace structures. In references 1 to 5, the
effects of eccentricities on the buckling of stiffened cylinders have been
treated analytically. An externally stiffened cylinder under axial compres-
sion has been shown experimentally to carry over twlce the load sustained by
its internally stiffened counterpart (ref. 6).

It should be expected, therefore, that substantial eccentricity effects
would be found in the vibration characteristics of stiffened cylinders. A
survey of the present literature (for example, refs. 7 and 8) reveals that
stiffener eccentricity generally has been neglected in studying the vibrations
of stiffened cylinders.

In the present paper, the differential equations of dynamic equilibrium
are derived from energy considerations for the free vibrations of ring- and
stringer-stiffened cylinders. The derivation is accomplished by utilizing
Donnell-type strain-~-displacement relations for the cylinder and beam-type
strain-displacement relations for the stiffeners. The stiffeners are not con-
sidered as discrete elements, but their effects are averaged or "smeared out."
However, the location of the resulting equivalent orthotroplc layers relative
to the shell middle surface is carefully maintained; that 1s, the common
assumption that the equivalent orthotropic shell is homogeneous through the




thickness with a single neutral surface is not made. Inplane inertias are
neglected and the differential equations of dynamic equilibrium and appropriate
boundary conditions are found by variational techniques. The differential
equations are solved to obtain a closed-form frequency expression for ring- and
stringer-stiffened cylinders for the case of simple-support boundary conditions.
Results from this expression are presented in the form of plots of natural fre-
gquencies as a function of mode shape for several practical configurations.

These plots illustrate the effects of stiffener eccentricity.

A comparable analysis for the free vibrations of stiffened flat plates is
presented and again it is shown that eccentricity effects can be important.

SYMBOLS

The units used for the physical quantities defined in this report are
given both in the U.S. Customary Units and in the International System of Units,
SI (ref. 9). The appendix presents factors relating these two systems of units.

A cross-sectional area of stiffener

c defined by equation (L47)

D flexural stiffness of isotropic plate or isotropic cylinder wall,

EtJ

12(1 - u2i

E Young 's modulus

G shear modulus

I moment of inertia of stiffener about its centroid

Iy moment of inertia of stiffener about middle surface of plate or
cylinder

J torsional constant for stiffener

M mass per unlt area of cylinder or plate

Mk:My:Mxy:Myx moment resultants

N number of stringers

Ny, Nys Ny stress resultants

R radius to middle surface of isotropic cylinder (see sketch a)



Erfyr

R nondimensional parameter, T
s nondimensional parameter, Eﬁéﬁ
Etd

Z curvature parameter, %%(l - |.12 )1/2
a length of cylindrical shell or plate
b width of plate
a stringer spacing (see sketch a)
£ frequency, %%
1 ring spacing (see sketch a)
m,n integers
t thickness of cylinder or plate
U, V,W displacements in x-, y-, and z-directions, respectively
u,v,w displacement amplitudes
X,¥,2 orthogonal coordinates defined in sketch a (x and y 1lie in middle

surface of cylinder or plate)
z distance from middle surface of plate or cylinder to centrold of

stiffener
a, B wavelength parameters
€xr€ys Yxy middle-surface normal and shearing strains
€T €y Yy T total normal and shearing strains (see egs. (2) to (L))
A defined by equations (4hka), (4ib), (Lhc), and (L4kd)

Poisson's ratio

I potential energy
o) mass density

w clrcular frequency



ViLL = VV2 where V2 is the Laplacian operator in two dimensions

Subscripts:

c cylinder

r stiffening in y-direction
s stiffening in x-direction
P plate

w inertial load

A subscript preceded by a comma indicates partial differentiation with
respect to the subscript.

DERIVATION OF BASIC EQUATIONS

The problem considered is the free vibration of a thin-walled circular
cylindrical shell which is stiffened by evenly spaced uniform rings and/or
stringers. (See sketch a.)
Inplane inertias are neglected,
and it is assumed that the
stiffener spacing is small com-
pared with the vibration wave-
length so that its effect on
the behavior of the cylinder
may be averaged (smeared out).
The strain energies of the cyl-
inder and stiffeners are pre-
sented and the displacements
of the stiffeners and the cyl-
inder are required to be com-
patible. After formulating the
potential energy of inertial
loading, the equations of
dynamic equilibrium and con-
sistent boundary conditions are
obtained by applying the method
of minimum potential energy to
the total energy of the system.
The differential equations of
dynamic equilibrium and consist-
. . . ) ent boundary conditions are then
Sketch a.- Geometry of eccentrically stiffened cylinder. obtained in a similar fashion

for a stiffened flat plate.




Strain Energy of Isotropic Cylinder

The strain energy of the unstiffened thin-walled isotroplc cylinder is

. = E ft/efz"Rf (2 +€2 +2uexT€yT+}_-_E72 )d_xdydz (1)
2(1—[-125 't/2 2 xyT

The linear Donnell-type strain-displacement relations are

€y = €x ~ ZWyyn (2)

€y = €y = W,yy (3)
7XyT = 7x-y' - ez'w)xy ()'")
where the middle-surface strains are defined as

Ex = U,
€y =
7}Cy' = u,y + V,x

Substitution of equations (2), (3), and (4) into equation (1) and integration
with respect to 2z ylelds the following expression for cylinder strain energy:

2nR 2
II f f Ez v + W) + 2uu (v + w)
o] ] 2 ey 3] ) o
2 l _ Ll ¥ 'R x\"?Y " R
2nR a
1l- 2 D 2 2
= “(u,y + v,x>:]d.x dy + 3 \—/‘o j;) E”xx Wy

+2UW, sy + 2(1 - u)w,ﬁgdx dy (5)

3
In this equation, D = 7El——2) is the flexural stiffness of the cylinder.
12{(1 - u



Strain Energy of Stiffeners

The strain energy of the stiffeners is derived on the basis that the dis-
placements in the cylinder and stiffeners are equal at the point of attachment
and stiffener twisting is accounted for in an approximate manner. In cases
where both rings and stringers are attached to the same surface of the shell,
the effect of joints in the stiffener framework is ignored.

Stringer energy.- The total strain energy of N stringers on the cylinder
is written as

N
a E G a
ns=fo S 2 d_Ade+-s—S—f w,2 dx (6)
o Ya 2 xT 2 0 Xy
3= s ;

where the first term inside the parentheses of equation (6) is the strain energy
of bending and extension in the stringer, and the second term is the strain
energy involved in twisting of the stringers. The quantity JdAg is an element

of the cross-sectional area of the stringer and GgJg 1is the twisting stiff-

ness of the stringer section. After substitution from equation (2), the first
term inside the parentheses of equation (6) can be written as follows:

a
Eg 2 2 2
j; -2—<u,x A dAg - 2u,,W, o A z dAg + W,y . z"dAg)|dx
5 s s

—_—

Inspection of these terms reveals that the first integral inside the parentheses
1s the area of the stringer cross section Ag, the second integral is the first
moment of the area (ESAS- wvhere Zg 1s the distance from the middle surface of

the isotropic shell (z = O) to the centroid of the stringer cross section, and
the third integral is the moment of inertia of the stringer (Ios) about z = O.

Note that the centroidal distance zg is positive for stringers on the outer

surface of the cylinder and negative for internal stringers. If the stringer
spacing d 1is sufficiently small, the effect of the stringers can be averaged
or smeared out, and an integral may be written instead of the finite sum. Equa-
tion (6), the total strain energy of the stringers, is now written as

2nR afm G.J
1 S 2 = 2 ss 2
HS = a A j; I:?(Asu,x - 2ZSASu’XW,Xx + IOSW,XX> + > wa:]r dx d'y (7)
Ring energy.- By utilizing an approach similar to that used for stringers,

fhe total strain energy of the rings is found as



1 2nR w \2 W
I = I f f Ar v:y 'ﬁ') - 2ZI‘AI‘(VJy )w)y-y + Iorw:yy

Grdy W 2
2 ’xy

+ dx dy (8)

where 1 1s the ring spacing, Ay 1s the area of the ring cross section, 2z,
is the distance from the middle surface of the isotropic shell (z = 0) to the
centroid of the ring, I, 1s the moment of inertia of the ring cross section

about z = 0, and GpJ, 1s the twisting stiffness of the ring.

Potential Energy of Inertial Loading

If the stiffened cylinder 1s undergoing simple harmonic motion of circular
frequency o (inplane inertias neglected), and w(x,y) is the deflection shape
at the time of maximum deflection, the potential energy due to inertia load is
written as in reference 10 as

2nR a
I, = - % L/; k/; Mo wodx dy (9)

A
where M = pct + pg ?5 + Py 7; is the averaged smeared-out mass per unit area

of the stiffened cylinder. The quantitles Po» Pg» 8nd p, are the mass den-
sities of the cylinder, stringers, and rings, respectively.

Equilibrium Equations and Boundary Conditions
for Stiffened Cylinders

The total potential energy II of the system is the sum of the energies
given by equations (5), (7), (8), and (9).

I =Te + g + My + Tl (10)

The method of minimum potential energy (8II = O) may now be applied to equa-
tion (10). By allowing the variation of the three displacements du, Bdv, and
8w to be arbitrary and by utilizing the fundamental lemma of the calculus of
variations, the three differential equations of dynamic equilibrium for the
stiffened cylinder are found to be




v
Et1 2 Uxx 2 Et1 JR
2rErAr(l - “2>
- Et1 yyy =0 (22)
Nvas Bt W ZgBghg Es(Is + ESAS)
W o+ — (v, + = + uu,x) - Uy pxx + W,
R(l _ H25< Yy R da a XXXX
=2 =
4 Erfr W + Ep (Ir + ZrAr) . N E AL, v ZpE AL .
R%1 ) 2224 R1 ’y 1 2YYY

MoPw = O (13)

2EI‘EI'AI‘ GSJS GI'JI‘
e, (e 03,

Note that in equation (13), the moments of inertia of the stiffeners have been
transferred by the following relations:

=2
Ios = Is + 2ghg

I, + EEAr

[}

IOI‘

where Ig and I, are the moments of inertia of the stringers and rings,
respectively, about thelr centroldal axes.

In addition to the equilibrium equations, the method of minimum potential
energy ylelds the sppropriate boundary conditions. The homogeneous boundary
conditions to be prescribed at each end of the cylinder are obtained from the
energy variation (81 = 0) as follows:



-2 -
E (I + zzA ) 2-EQA
s\Is shs stighs
D(w,xxx + uw’yyx) + 3 XXX "~ 3 rxx
Gt3 Ggdg Grdp
+ + + =0 1
( 3 a T )" xyy (1ha)
or w=0 (14v)
_ Eg (Is + ‘z‘gAs) ZeFehg
D(w,xx + “W:yy) + 3 Vigx = —3— YWx = O (15a)
or w,, =0 (15b)
Et W | Eghg zgBgAg
e R A )| B oR R L SSELICS
or u=0 (16b)
Gt(u,y + v,x) =0 (17a)
or v=20 (170)

The natural boundary conditions are given by equations (14a), (15a), (16a),
and (17a), and the geometric boundary conditions are given in equations (14b),
(15b), (16b), and (17b). The condition in equation (1ka) requires that a gquan-
tity comparable to the Kirchhoff shear is prescribed and hence is a free-edge
boundary condition. The three natural boundary conditions in equations (15a),
(16a), and (1T7a) correspond to conditions in which the edge moment resultant,
the normael stress resultant, and the shearing stress resultant, respectively,
are prescribed.

As a matter of interest the equilibrium equations (egs. (11) to (13)) and

the boundary conditions (egs. (14) to (17)) may also be written in terms of
stress and moment resultants. In this form the equilibrium equations become

Ne,x + Nxy,y = O (18)

9



+ =0 (19)

NX.Y:X
+ - + Yy Mw2w = 0
Me,xx = Mey,xy F Moxy - My,yy t R

and the boundary conditions which must be prescribed at each end of the cylinder

Ny,v y

(20)

become

Mx,x - (Mky,y - Mﬁx,Y) =0
or w =20
My =0
or W,y =0
Ny =0
or u=20
ny =0
or v =20
where
=2
ES(IS + ZgAg
My = - D(W:xx + “W:yy) + 3 Wy yx
I Er(Ir + EgAr>
My = - D(W:yy + “W:xx> + 7 syy
3 G.J
_ |Gt s¥s
Mxy = ——6 + 3 w’xy
Gt3 Gy
Myx = "(75' AL
Et W Eghg
Nx=l-p2E1,x+p(v,y+§)] + 3 U,y -

(21a)

(21b)
(22a)
(22p)
(23a)
(23b)
(2ka)

(24b)

(25)

(26)

(Equations continued on next page)

10




_ Et - ErAyp W\ ZrBrAr
Ny-m(vw”’ﬁ*““’x) + Ty +§) - T vy
> (26)
Ny = Gt(u,y + v,x)
-/

Equilibrium Equatlions and Boundary Conditions
for Stiffened Flat Plates

Dynamic equilibrium equations and appropriate boundary conditions can be
derived by following the procedure already outlined for stiffened cylinders.
For an isotropic plate, the middle-surface strain-displacement relations
employed for the cylinder are replaced by

1]
o
™M

€x
€y = Voy (27)
7xy = u,y + Vix

If the same procedure is followed, equilibrium equations ldentical to egua-
tions (11), (12), and (13) with R taken to be infinitely large are obtained
as follows:

= 2
14 EsAs(l - “2) LLl-u ST ZsEsAs(l - ) v =0
Etd Wrxx > Yy 5 xy ~ Ftd Yxxx
(28)
= )
1+ ErAr(l - “2) + 1-p s Ltu ZrErAr(l s ) -0
Etl Voyy 2 Urxx 2 xy T Et1l Yryyy =
(29)
5 EA E(I +22A> E(I +22)
Dvh stshsg + s\‘s s™s v I o Ar
w o= El I XXX a XXX 1 w’yyyy
Gst GrJr 2rErAr 2
< ==+ =, - = Vigyy - MW = 0 (30)

11



A A
where M = <épt + pg E? + Py 7;). The subscript s refers to the stiffeners

in the x-direction and the subscript r refers to the cross stiffeners in the
y-direction. Note that, unlike classical linear flat-plate theory, equa-
tion (30) is coupled with equations (28) and (29) as a result of one-sided
stiffening on the plate. It can be seen, however, that for symmetrical stiff-
ening (Es = Zp = O) equation (30) becomes uncoupled from equations (28)

and (29).

The appropriate homogeneous boundary conditions obtained from the varia-
tional procedure are as follows:

For edges parallel to the y-axis

-2 -
E (I + ZGA ) ZoEA
D(W:xxx + “W’yyX) + 225 a =L Vs ek Sd? > Wy
Gt2 | GgJs | Gy _
+ ( 3 + > + ) W:xyy =0 (31a)
or w=20 (31p)
Eg (IS + 'Z'EAS) Z E AL
D(w,xx + uw,yy) + 3 Vixx - —3— Wx = 0 (32a)
or w,y =0 (32p)
Et EsAg EsEsAs
1. 2(u,x + “'v}y) + Uy = T Woxx = 0 (353)
or u=20 (33b)
Gt(u,y + V:x) =0 (3ka)
or v =0 (34b)

12




and for edges parallel to the x-axis

N EI.(Ir + 212-‘\3)

z
D(¥,yyy *+ ¥, xxy ) 3 Voyyy - izr& Voyy
Gt> | GsJs |, Grdy
+(3 Tttt 1>w’yxx=° (352)
or w=20 (35b)
=2
E I, + Z 2B
D(w,yy + uw,xx) + r( z - rAr) Vyyy - —quéz V,y = O (36a)
or W,y =0 (36b)
Et Epdy ZpERA
Sft—;§(v,y + Hu:x) = My - ___T_E Wyyy = O (37a)
or v=0 (37p)
Gt(u,y + V:x) =0 (38a)
or u=0 (38b)

In addition to these boundary conditions the following relationship must be
satisfied at free corners:

Vyxy = O (39)

It should be noted that, even though this theory is linear, the inplane
displacements u and Vv are involved in the boundary conditions for one-
sided stiffened plates. For the case of symmetric stiffening 2Zg = Zp = 0, the

boundary conditions given in expressions (31), (32), (35), and (36) uncouple
from the inplane displacements and the other boundary conditions, expres-
sions (33), (34), (37), and (38), need not be considered.

The flat-plate equilibrium equations and boundary conditions may also be

written in terms of stress and moment resultants as was done for the stiffened
cylinder in the previous section.

13



SOLUTIONS FOR SIMPLY SUPPORTED CYLINDERS AND PLATES

Solutions are presented for the natural frequencies of vibration of simply
supported cylinders and plates with eccentric stiffening. These solutions
11lustrate in a straightforward manner some of the significant effects of stiff-
ener eccentricity on the vibration behavior.of such structures.

Stiffened Cylinder
The coordinate system chosen has its origin located at one end of the
cylinder. The simple-support boundary conditions to be satisfied at each end
x = 0,a are

W=M=v=N,=0 (+0)

The expressions for the displacements u, Vv, and w, which satisfy these
boundary conditions, are given as '

\.
_ = mux ny
u =1u cos —a— cos R
= .. mmX E{&
v =¥ sin == sin = (k1)
w =% sin 2% cos X
a R

where m 1s the number of axial half waves and n 1is the number of circumfer-
ential full waves. After substitution of equations (41) into the equilibrium
equations (egs. (11), (12), and (13)) the following equation is obtained after
some manipulation:

_.-E. - (R BQ(L;—EH —(LE—E> |:u + §<EITS>(1 - ue)aﬂ | r‘_j FO_
Er2) [1 270 - 2) + i__gﬂ [1 pRl - 2) s (ZR_r)a(l ] pe)nﬂ il = lo| wo

-
-
+
[
T
fa
e
——
(i
]
+
o
S
8o
| S
[
+
|
Py
»
1
b
™
o
+
/_\l
R
Rals
i
Py
-
i
=
™
S
5
[
o
N
vt
L
]
[
o

1k




where

pt(a - 31 + 2)° 181 - ) + wPr2(1 - u2)

B33 = - - R Tt
- -2 -
Esaﬁ(l - u2)(Is + ngs) Ern“(l —ug)(Ir + err> 2§h2<zr>(1 ug)
RAAEL RE1EL R

_ <Gst + GrJr) a?nz(l - ue)
d l EtR2

and the following nondimensional parameters are defined:

— E.A
_ na = sSs
B = mrR S Etd
a___IIlJIR ﬁ'___EI'AI'
a Et1

To obtain a nontrivial solution, the determinant of the coefficients of 1, ¥,
and W 1is set equal to zero. After more manipulation, the following nondimen-
sional frequency equation is obtained:

L 2 EgI GgJ G E,I
Ma"w= _ 4 2\2 i | Psts ofYgdg rJr y frir
nhD =m (l + B ) + m [de + B ( ™ + o3 > + B DI:]

. 12Z2<? + SA + BAL + SRATS>

e - (43)
where
, _\2
Ag =1+ 2(12(%5-) (62 - u) + a“(ZR—S> (1 +82)° (Lha)
2
Ap =1+ 2n2<;§)(1 - B2u) + n&(%{) (1 + 2)° (4hb)
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- \2 _ \2
Ars = nEo@Es?(l - 12) + 21+ ) (—1.5) + o1 - u2 4+ 282(1 + ) (%)

N

+ 2n2(1 - u.2)<_£> + 2n2(1 - p2)<%2> + ont(1 + u)E@E)(%‘i) +1 - p2  (bke)

R

A= (1+62)" 42821+ )(F+8) + (1 - 2[5+ BF + 28E(L + )] (uka)

4 2
and another nondimensional parameter 22 = é—gl—ZEE—l has been defined.

Rt

In equation (43), the effect of eccentricity of stiffening is reflected by
the terms containing Zg and Z,.. The quantities 2zg and 32, are positive

when the stiffeners are located on the external surface of the cylinder and
negative when the stiffeners are on the internal surface so that sign changes

can occur in equation (43). Notice that the quantity (Bg - p) in Ag and the

quantity (l - Bgu) in A, can also change signs depending upon the cylinder

geometry and vibration mode shape. These facts suggest that some caution
should be exercised in drawing general conclusions as to the influence of eccen-
tricity of stiffening on the vibration behavior of stiffened cylinders.

Stiffened Flat Plates
A coordinate system is chosen having its origin at one corner of a plate
of length a and width b. The simple-support boundary conditions which must
be satisfied are

w(0,y) = W(a’Y) = w(x,0) = w(x,b) = O

MY(x)b) =

(]
I
I
@)

Mx(0,y) = Mx(a,y) = My(X,O)

[
(@}

Nx(0,¥) = Nx(a,y) = Ny(x,0) = Ny(x,b) =

v(0,y) = v(a,y) = u(x,0) = u(x,b) =0

Expressions for the displacements u, v, and w which satisfy these boundary
conditions are

16



g
Y

u =1 cos BX gin L
a b
_ = mrx niy
v = Vv sin —— °os ‘ET'> (45)
W =% sin =X gin 2Y
a b

where for flat plates m and n are the numbers of half waves in the x- and
y-directions, respectively.

Following a procedure similar {o that used in the previcus section, the
following nondimensional frequency equation is obtained:

L 2 2 E.I G E,.I
by o2 i ol ) 4 o T

_ 2 2
S(1 + g2 2<Ei) + Rpt(1 + g2 2<E£) RSC \L
+12(1 - w2t - o ) t ( ) v) (46)

(i + 52)2 + 282(1 + w)(R ; s) + (l - ug)E§4-B“§ + 2°R3(1 + “ﬂj

where

2 - \/=
c = g2 [Be(l - u2) + 2(1 + u)] (%—) + g1 + u)z(%-Xi—lj

_ \2
Z
+ g1 - u2 + 2621 + ) (-,-65) (47)
and the following nondimensional parameters are defined:

_ na = Bghg =  EAAL
p-2  §5-758 R
mb Eta Et?

In equation (46), the terms which involve Zg and 2z, are present
because of eccentric stiffening. If the plate is stiffened by only longitudinal
or transverse stiffeners, all terms involving Zy or 3Zg are squared and hence

the surface on which the stiffener is attached 1s unimportant. However, if both
longitudinal and transverse stiffeners are present, the coupling term C
defined in equation (47) has a term with the coefficient Z,.Zg which can be

negative if the longitudinal and transverse stiffeners are on opposite sides of
the plate.

17



RESULTS AND DISCUSSION

Because of the large number of parameters appearing in the frequency
expressions, it is impractical to present results of a general nature. There-
fore, computed results for stiffened cylinders and plates with proportions of
contemporary interest are presented in order to illustrate the magnitude of
eccentricity effects. Results are presented in the form of plots of natural
- frequencies as a function of mode shape; for each configuration considered the
physical properties of the structure are given in the figure.

Stiffened Cylinders

Stringer-stiffened cylinders.- In figure 1, the natural frequenciles as
obtained from equation (L43) are given for a stringer-stiffened cylinder (cyl-
inder 1) with physical properties similar to one of the integrally stiffened
cylinders considered in reference 6. The lowest natural frequency for stringers
attached to the outside occurs at a higher mode number n and is approximately
35 percent higher than the lowest natural frequency for the same stringers

attached to the inside.

As a matter of interest, natural frequencles were calculated for a cylinder
with the same physical properties as those given in figure 1 except that the
depth of the stringers was changed from 0.302 inch (0.767 cm) to 0.50 inch
(1.27 cm). These frequencies are not plotted, but the lowest natural frequency
for external stiffeners was 64 percent higher than the lowest natural frequency

for internal stiffeners.

In figure 2, the natural frequencies are given for an integrally stringer-
stiffened cylinder (cylinder 2) which was studied both experimentally and ana-
lytically for compressive buckling in reference 3. Proportions of this cyl-
inder simulate a projected design of the wall of a 33-foot (10.6-m) diameter
tank for a nuclear upper stage of a large launch vehicle (ref. 3). From fig-
ure 4, it can be seen that the eccentricity effects can be important even in
very large-diameter stiffened cylinders of practical proportions. The lowest
natural frequency for this case was approximately 35 percent higher for external
stiffeners than for internal stiffeners. To the left of the point where the
curves cross, internal stringers give a higher frequency than external stringers
since the term (B2 - u) in equation (44a) has changed sign and become negative.

Ring-stiffened cylinders.- In figure 3, the natural frequencles are plotted
for a ring-stiffened cylinder. This configuration (cylinder 3) was obtained by
replacing the stringers on the cylinder of figure 1 (cylinder 1) with rings of
the same cross sectlon and spacing. For this case, the eccentricity effects
are not very large. The lowest natural frequency is 6 percent higher for rings
on the insilde than for rings on the outside. Notice, however, that for m = 2,
external rings give a higher frequency at the lower portion of the curves than
internal rings. This situation can be explained by examination of the term
which involves (l - ng) in equation (44b). For a cylinder which is stiffened
with only rings, thlis term is the only one which can ¢hange sign. For small B

18



(where 1- Bgu.> 0), external rings give a higher frequency than internal
rings. As B increases, (l - ng) eventually becomes negative at which time
internal rings will give a higher frequency than external rings. The crossings
on the curves for m =1 and for m = 2 can be found by setting (1 - ng)
equal to zero and solving for n.

The situation for a cylinder which is stiffened with both rings and
stringers is further complicated by the coupling term A,.g in equation (43).

To determine the influence of internal or external stiffening for this case,
the natural frequencies must be investigated from equation (43) for the specific
cylinder of interest.

Stiffened Flat Plates

The natural frequencies for a flat plate which is stiffened in both direc-
tions are plotted in figure 4. The plate and stiffener proportions are similar
to those of stiffened cylinder 1 (fig. 1). As can be seen in the figure, the
frequencies are higher for the case where all the stiffeners are on the same
surface of the plate. When the stiffeners in the y-direction are on the sur-
face opposite those in the x-direction, the product ZpZg in equation (47) is

negative and the frequencies are consequently lowered. For stiffeners in only
one direction, the surface upon which the stiffeners are attached is unimpor-
tant; however, eccentricity effects must still be accounted for in order to
determine the frequencies accurately.

CONCLUDING REMARKS

A small deflection theory is used to derive dynamic equilibrium equations
for eccentrically stiffened cylinders and flat plates. Inplane inertias are
neglected and frequency equations are obtalned for the case of simple-support
boundary conditions. These frequency equations illustrate the effects of
eccentricities and other stiffening parameters.

The stiffening edcentricities are found to have a significant effect on
the natural frequencies of both cylinders and plates. It is concluded that
stiffener eccentricity effects on vibrations are important and should be con-
sldered in the design and dynamic analysis of stiffened structural components.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., June 1, 1965.
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APPENDIX

CONVERSION OF U.S. CUSTOMARY UNITS TO SI UNITS

The International System of Units (SI) was adopted by the Eleventh General
Conference on Weights and Measures, Paris, October 1960, in Resolution No. 12
(ref. 9). Conversion factors for the units used herein are given in the fol-

lowing table:

Physical U. 8.
quantity Custogary
Unit
Length in.
ft
Stress psi = 1bf/in?
Frequency cps

Conversion
factor

)

0.025k
0.3048
6.895 x 105
1

obtain equivalent value in SI unit.

ST unit

meters (m)
meters (m)
nevtons per sq meter (N/m2)
Hertz (Hz)

*Multiply value given in U.S, Custdmary Unit by conversion factor to

Prefixes to indicate multiple of units are as follows:

20

Prefix Multiple
giga (G) 109
centi (c) 1072
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Figure 1.- Natural frequencies of stringer-stiffened cylindrical shell {cylinder 1).
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Figure 2.- Natural frequencies of stringer-stiffened cylindrical shell (cylinder 2).
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Figure 4.- Natural frequencies for square plate stiffened in x- and y-direction.
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